Fully differential investigation of two-center interference in dissociative capture in p + H ₂ collisions

S. Bastola,¹ M. Dhital,^{1,*} B. Lamichhane,^{1,†} A. Silvus ,^{1,‡} R. Lomsadze ,² J. Davis,¹ A. Hasan,³ A. Igarashi,⁴ and M. Schulz ^{1,§}

1 Physics Dept. and LAMOR, Missouri University of Science & Technology, Rolla, Missouri 65409, USA

2 Dept. of Exact and Natural Science, Tbilisi State University, Tbilisi 0179, Georgia
3 Dept. of Physics, UAE University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE
4 Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan

*Present address: Physics Dept., University of California-Riverside, Riverside, CA 92521. †Present address: Earlham College, Richmond, IN 47374. ‡Present address: Department of Radiation Oncology, Washington University, St. Louis, MO 63110.

Synopsis Fully differential cross-sections were measured for the dissociative capture process to study the two-center interference term in $p + H_2$ collisions.

We have measured and calculated fully differential cross sections for vibrational dissociation following capture in 75-keV p + H₂ collisions. For molecular orientation а perpendicular to the projectile beam axis and parallel to the transverse momentum transfer, we observe a pronounced interference structure. Compared to a previous nearly kinematically complete experiment we improved the recoil momentum resolution by a factor of 5 and enhanced the number of true coincidences by an order of magnitude. We also did a correction for the momentum transferred to the molecule which was neglected in the past. The positions of the interference extrema suggest that the interference term is afflicted with a phase shift that depends on the projectile scattering angle. However, no significant dependence on the kinetic energy release

§ schulz@mst.edu
alternative correspondence: sbdr9@mst.edu

was observed. Considerable discrepancies between our calculations and experimental data were found.

References

- Fully differential investigation of two-center interference in dissociative capture in p + H 2 collisions, S Bastola, M Dhital, B Lamichhane, A Silvus, R Lomsadze, J Davis, et al., Physical Review A 105 (3), 032805
- [2] Fully Differential Study of Capture with Vibrational Dissociation in Collisions, BR Lamichhane, T Arthanayaka, J Remolina, A Hasan, MF Ciappina, et al., Physical review letters 119 (8), 083402
- [3] Using coherence and interference to study the few body dynamics in simple atomic collisions systems, S Bastola, Missouri S&T